

Search for a Heavy Fourth Generation t' Quark in the Top Quark Sample at CDF

- Can a t' Exist?
- Event Selection
- Analysis Strategy
- Extracting Limits
 - □ A priori limits
 - Systematic Errors
- Results
- Future

Over 10³²

Brian L. Winer
Ohio State University
CDF Collaboration.

Can a t' Exist?

- Z width measurement rules out a fourth generation with a light neutrino m(v₄)<m(Z)/2
- Even if $m(v_4)>m(Z)/2$, precision electroweak data restrict masses and couplings of new quarks and leptons (PDG)
- He/Polonsky/Su (hep-ph/0102144): a generic 4th chiral generation is consistent with EWK data; can accommodate a heavy Higgs (500 GeV) without any other new physics.
- N=2 SUSY requires three more "mirror" generations the SUSY breaking mechanism can induce couplings of the mirror quarks with the known ones
- Other models (eg: "Beautiful Mirrors" hep-ph/ 0109097) include possibilities of a new heavy up-type quark decaying to Wb

August 31, 2004 DPF 04: B. L. Winer Page 2

Decay of t'

The most natural decay would be $t' \rightarrow W$ b'. This is suppressed if M(t') < M(b') + M(W)

•There is reason to believe (from precision ewk data) that the mass splitting between a t' and a b' quark should be relatively small (PDG). So:

```
If M(t') < M(b') + M(W), then....
```

- t' → W b (Cabibbo suppressed)
- t' → Ws, Wd (doubly/triply Cabibbo suppressed)
- -t' → l v b' (virtual W)

not required to be a *b* quark

We will search for: $p\overline{p} \to t'\overline{t}' \to WqW\overline{q} \to \ell \nu q(q\overline{q})\overline{q}$

August 31, 2004

DPF 04: B. L. Winer

Page 3

Analysis Strategy

- We have developed techniques for extracting standard tt from the data using kinematic selection.
 - No b-tag requirement
 - Use a kinematic quantities to separate signal from background
 - ightharpoonup Used H_T = Sum E_T of lepton + Missing E_T + E_T of Jets (Scalar Sum)
 - > Also used a Neural Network with a set of kinematic variables.
 - $lue{}$ Fit quantity in data for backgrounds + signal ($tar{t}$)

R. Marginean talk, Sat. Top Session

- Extract a cross section
- Use same approach can be used to search for $t'\bar{t}'$ production.
 - No b-tag requirement (sensitive to t' → Wq)
 - Use a kinematic quantity to separate signal from background
 - ➤ Use H_T
 - \Box Fit data for backgrounds (including $t\bar{t}$) + signal ($t'\bar{t}'$)
 - \triangleright Extract a 95%CL limit on $\sigma(t') \times B(t' \rightarrow Wq)^2$

Event Selection

Use Lepton + Jets Decay Mode

- Restrictions on direction.

Select runs where detector was operating well. → 195 pb⁻¹ of integrated luminosity

August 31, 2004

DPF 04: B. L. Winer

Separation of Signal & Background

 H_T distribution for W+4p, ttbar, and t' where M(t')=225 GeV

August 31, 2004

DPF 04: B. L. Winer

- Map out L as a function of $\sigma(t') \times B(t' \rightarrow Wq)^2$
 - Integrate to find 95% CL Limit
 - tt could float or be constrained.

100 Run many pseudoexperiments to map out a priori 50 limits

For Illustration Only

= 225 GeV

m(t')

 σ_{tt} unconstrained

200

150

250

200

150

0

100 50

t' cross section limit (pb)

Page 7

Will constrain $t\bar{t}$ cross section to theory \pm δ (theory): 6.7 \pm 0.9 pb

DPF 04: B. L. Winer

Effect	Error
Jet Energy Scale	$\delta\sigma_{t'}$ =1.30 + 0.16 $\sigma_{t'}$ for M _{t'} =225GeV
W+Jets Q ² Scale	$\delta\sigma_{t'}$ =0.45 pb for M _{t'} =225 GeV
Top Mass	Quote at 170,180
Lepton Isolation	5%
Lepton ID	6%
ISR/FSR	1.5%/0.5%
Luminosity	5.9%
QCD Background	Negligible Effect
PDF (accept.)	3.5%

- Systematic Uncertainties impact the limit:
 - Can be dependent on the mass of the t'.
- Incorporate into likelihood
 - Degrades limit
 - Most systematics use a gaussian term.
 - Jet Energy Scale uses a more complicated function.

Modified Likelihood:

$$L(\sigma_{t'}) = \prod_{i} P(n_i \mid \mu_i) \times G(f_1) \times G(f_2) \times \cdots$$

$$\mu_i = \sum_{j} f_j L_j \sigma_j \varepsilon_{ij}$$
Page 8

Looking at the data...

Shown for $M_{t'} = 225 \text{ GeV/c}^2$

Must repeat at different M_{t} , to find limit as a function of mass.

H_T Distribution

Plot for fit result with t' signal included at 95% CL limit

[σ (ttbar) \rightarrow 6.12 pb in this fit]

95% CL Limits

Constraints
vary with
assumed
top mass, but
not by much.

M _{top}	oconstraint ★
170	$7.8 \pm 1.0 \text{ pb}$
175	$6.7 \pm 0.9 \text{ pb}$
180	$5.75 \pm 0.7 \text{ pb}$

CDF Run 2 195 pb⁻¹ $M_{top} = 180$ $\sigma(pp \rightarrow t't')B(t' \rightarrow Wq)^2$ (pb) t'→Wq, ℓ + ≥4 jets channel **Preliminary Expected** $M_{top}=170$ 95% CL 1σ sensitivity upper limit Cacciari, et al., **NLL** resummed hep-ph/0303085 200 250 300 350 150 400 t' mass (GeV)

Limits on $σ*BR(t'→Wq)^2$

^{*} Taken from hep-ph/0303085

Future Projections

This assumes no improvement in systematic errors

Final Comments

- Analysis is based on ~200 pb⁻¹ of integrated Luminosity.
 - Fermilab recently shutdown for ~13 weeks.
 - CDF has an additional ~ 200 pb⁻¹ of data that will be analyzed in coming months.
 - □ Run II expected to collect 4 8 fb⁻¹
- Expect to improve simulation of detector
 - Provides a reduction of the energy scale systematic.
 - Also expect to reduce other systematic errors.
 - Some Systematic (incl. Jet Energy Scale) improve with luminosity.
- With the kinematic analysis of $\sigma(t\bar{t})$ we obtained a substantial improvement by using a series of kinematic variables as input to a neural network.
 - Over the next several months we expect to move in this direction for the t' search as well.